It is often appropriate to model living tissues as continuous media. For example, at the tissue level, the arterial wall can be modeled as a continuum. This assumption breaks down when the length scales of interest approach the order of the micro structural details of the material. The basic postulates of continuum mechanics are conservation of linear and angular momentum, conservation of mass, conservation of energy, and the entropy inequality. Solids are usually modeled using "reference" or "Lagrangian" coordinates, whereas fluids are often modeled using "spatial" or "Eulerian" coordinates. Using these postulates and some assumptions regarding the particular problem at hand, a set of equilibrium equations can be established. The kinematics and constitutive relations are also needed to model a continuum.
Second and fourth order tensors are crucial in representing many quantities in electromechanical. In practice, however, the full tensor form of a fourth-order constitutive matrix is rarely used. Instead, simplifications such as isotropy, transverse isotropy, and incompressibility reduce the number of independent components. Commonly-used second-order tensors include the Cauchy stress tensor, the second Piola-Kirchhoff stress tensor, the deformation gradient tensor, and the Green strain tensor. A reader of the mechanic's literature would be well-advised to note precisely the definitions of the various tensors which are being used in a particular work.
No comments:
Post a Comment